5.3 questions ms

1.	(a)	gains	s electrons (1)	1	[1]
2.	(a)	(i)	Fe ²⁺	1	
		(ii)	F ₂ O	1	
		(iii)	Fe ²⁺ Cl ⁻ Use list principle if more than two answers	1 1	
	(b)	(i)	e.m.f. = E(rhs) - E(lhs) = 1.52 - 0.77 = 0.75 (0.75 scores first mark also)	1 1	
		(ii)	$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+} + \mathrm{e}^{-}$	1	
		(iii)	Decrease (Increase is CE, no further marks)	1	
			Equilibrium (or reaction) shifts to R (or L if refers to half equation in table)	1	
			(or in favour of more Fe ³⁺) (or more Fe ³⁺ formed)		
			(or more electrons formed)		
			Electrode potential (for Fe^{3+}/Fe^{2+}) less positive (or decreases)	1	[10]
3.	(a)	Fe ²⁺	or Fe(II)	1	
	(b)	(i)	6 or (VI)	1	
		(ii)	3 or (III)	1	
	(c)	(i)	0.5	1	
		(ii)	$2Mn^{2+} + 8H_2O + 5S_2O_8^{2-} \rightarrow 10SO_4^{2-} + 2MnO_4^{-} + 16H^+$		
			Both SO $_{4}^{2-}$ and MnO $_{4}^{-}$ on right Balanced	1 1	[13]
4.	(a)	(i)	0.60 V	1	
		(ii)	$H_2O + H_2SO_3 \rightarrow SO_4^2 + 4H^+ + 2e^-$	1	

6.	(a)	(Stand	dard) hydrogen (electrode) (1)	1	
			Penalise by list principle	5	[11]
		(iii)	V^{2+} , (1) Fe ²⁺ (1)		
			<i>Note:</i> H^+ <i>is incorrect</i>		
			Penalise by list principle		
		(ii)	Fe^{3+} ; (1) NO_3^- (1)		
	(c)	(i)	Cl ⁻ (1)		
			Allow a correct explanation when no change given	5	
			or if reduced temperature given, reaction exothermic		
			Equilibrium displace to right (1)		
			CE if change incorrect		
		(ii)	Lower $[Cl^-]$ or reduce temperature Increase pressure or concentration of Cl_2 (1)		
			Do not use list principle for other incorrect species		
			Temperature = $298 \text{K} / 25^{\circ} \text{C}$ (1)		
			Allow 1M HCl		
		. /	$[C\Gamma] = 1 \text{ molar} / 1M$ (1)		
	(b)	(i)	$Cl_2(g)$ at 100 kPa / 1 bar / 1atm (1)	-	
		Not 'e	electron pair'	1	
5.	(a)	O	xidising agents take/remove/accept/gain electrons (1)		
					[12]
		V^{2+} -	$+ 2H_2O \rightarrow VO_2^+ + 4H^+ 3e^-$	1	
	(c)	VO_2^+	7	1	
			or electrode becomes more positive (Q o L)	1	
			Electrons more readily accepted or more reduction occ	urs	
		(iv)	Increased Equilibrium IOZ/I_{\perp} displaced to the right	1	
		(iii)	Unchanged	1	
			the e.m.f is determined when no current flows	1	
		(ii)	The concentration of the ions change or are no longer s	standard or	
	(b)	(i)	$2IO_3^- + 2H^+ 5H_2O_2 \rightarrow 5O_2 + I_2 + 6H_2O$ Specie Balance	s 1 red 1	

(b) To allow transfer of electrons / provide a reaction surface (1) (i) 298 K (1) (ii) Both F^{3+} (aq) and Fe^{2+} (aq) have a concentration of 1 mol dm⁻³ (1) (QoL) OR $[H^+] = 1 \text{ mol } dm^{-3}$ NOT zero current or 100 kPa 3 +1.34 V (1) (c) $2 \operatorname{MnO_4^-} + 5 \operatorname{H_2SO_3} \rightarrow 2 \operatorname{Mn^{2+}} + 5 \operatorname{SO_4^{2-}} + 3 \operatorname{H_2O} + 4 \operatorname{H^+}$ Correct species / order (1) Balanced and cancelled (1) Allow one for 2 MnO_4^- + 5 $H_2SO_3 \rightarrow 2 Mn^{2+}$ + 5 SO_4^{2-} 3 Ce^{4+} (aq) (1) (d) (i) VO_2^+ (aq) (1); Cl_2 (1) (ii) Penalise additional answers to zero 3 Pt | Fe²⁺ (aq), Fe³⁺ (aq) || Ce⁴⁺ (aq), Ce³⁺ (aq) | Pt (e) Correct species (1) Correct order (1) Deduct one mark for each error 2 7. Cell e.m.f.: 1.93 (v) CE if negative value given (1) (a) Half equation: $Mg \rightarrow Mg^{2+} + 2e^{-}(1)$ or 🔶 Ignore state symbols Mark on after an AE 2 (b) Change in e.m.f.: increases (1) Mark on even if incorrect *Explanation*: Equilibrium displaced to Mg^{2+} or to the left (1) cell reaction or overall reaction goes to the right Electrode is more negative or E decreases or gives more electron or forms more Mg²⁺ ions Mark separately

3

[12]

	(c)	Cell	<i>e.m.f.</i> : -0.84 (V) (1)		
		<i>Expl</i> or re	<i>anation</i> : Fe is giving electrons or forming Fe ²⁺ fraction goes in the reverse direction (1) Mark on after AE		
			N.B. In (a) and (c) mark on if no value given, but CE in both (a) and (c) if e.m.f. = 0	2	[7]
8.	(a)	(i)	(standard) hydrogen (electrode) / hydrogen half cell not hydrogen cell (1)		
			reference electrode / electrode to which others are compared (1)	2	
		(ii)	0.00(V) / 0 / zero (1)	1	
	(h)	(i)	emf = -0.14 - (-0.25)		
	(0)	(1)	= + 0.11 V / allow 0.11 V not - 0.11 V (1)	1	
		(ii)	electrode $D / Sn^{2+} / Sn / tin / right$ hand electrode (1)	1	
		(iii)	$Ni + Sn^{2+} \rightarrow Ni^{2+} + Sn$ (ignore state symbols) (1)	1	
	(c)	(i)	e.m.f = $-0.44 - (-0.14) = -0.30$ (V) / emf for cell is – ve comparison of standard electrode potentials (1)		
			+ve e.m.f for feasible reaction / tin is a weaker reducing agent \therefore would not occur (1)		
			if correct ΔG argument used, allow both marks	2	
		(ii)	manganese will decrease in size / disappear / eaten away / dissolves / solution turns (pale) pink (1)		
			effervescence / bubbles (of colourless gas) / fizzing not gas given off (1)		
			reaction likely to occur is $Mn + (2)H^+ \rightarrow Mn^{2+} + H_2$ (1) or the same ideas expressed in words		
			+ve e.m.f. / +1.18 V / Mn is strong reducing agent / has large – ve $E^{(\Phi)}$ (1)		
			(not just Mn is more reactive)	4	[12]

9. (a) oxidising agent <u>accepts</u> electrons (1)

1

(b) Stronger oxidising agent H^+ (1)

$$H^{+}(aq) + e^{-} \rightarrow \frac{1}{2} H_{2}(g)$$

$$D^{+}(aq) + e^{-} \rightarrow \frac{1}{2} D_{2}(g)$$
Equation
$$H^{+}(aq) \frac{1}{2} D_{2}(g) \rightarrow D^{+}(aq) + \frac{1}{2} H_{2}(g) \quad (1)$$
e.m.f.
$$0.000 - (-0.004) = + 0.004 \text{ V} \quad (1)$$
3

(c) Equation
$$AgF(s) + Cl^{-}(aq) \rightarrow AgCl(s) + F^{-}(aq)$$
 (1)
e.m.f. $= +0.78 - 0.22 = +0.56 \text{ V}$ (1) 2

(d) (i) Silver lies above hydrogen in the electrochemical series $\underline{Or} Ag^{+}(aq)$ is a stronger oxidising agent than $H^{+}(aq)$ (1)

(ii) Hydrogen halide HI (1) Equation $H^+(aq) + 1^-(aq) + Ag(s) \rightarrow Agl(s) + \frac{1}{2}H_2(g)$ (1) e.m.f. 40.00 - (-0.15) = +0.15 V (1) 4 [10]

10. (a) Reducing agent
$$Br_2(1)$$

	Half	$Fequation \qquad Br_2 + 6H_2O \rightarrow 2BrO$	$D_3^- + 12H^+ + 10e^-$ (1)	2
(b)	(i)	Temperature	298 K or 25°C (1)	
		Concentration	$1.00 \text{ M or } 1.00 \text{ mol } \text{dm}^{-3}$ (1)	
	(ii)	Secondary standard electrode	calomel or Ag/AgCl (1)	
		Reason	Easier to use or hydrogen electrode (1) difficult to use	4
(c)	(i)	$[Co(H_2O)_6]^{3+}$ (1)		

- (ii) $[Co(H_2O)_6]^{2+}$ (1)
- (iii) $E^{•}$ for $[Co(CN)_6]^{3-}/[Co(CN)_6]^{4-}$ is negative with respect to H^+/H_2 (1) Electrons flow to H^+/H_2 and H^+ reduced (1) 4
- **11.** (a) Fe + Cu²⁺ \rightarrow Cu + Fe²⁺ (1)

allow use of soluble Cu salt eg CuSO₄ ignore state symbols

Mill Hill High School

[10]

1

(b)	(i)	$\operatorname{Fe}(s) \left \operatorname{Fe}^{2+}(aq) \right \left \operatorname{Cu}^{2+}(aq) \right \operatorname{Cu}(s)$	
		junctions correct (1) ignore state symbols allow alternative symbols for salt bridge allow if junctions are correct but order is wrong providing metals on each side of salt bridge are the same ie Fe Fe^{2+} not Fe Cu^{2+}	
		order of species correct (1) do not give this mark if cell reversed	2
	(ii)	e.m.f. = $+ 0.34 - (-0.44)$ = $+ 0.78 V$ (1) must have $+ sign$ allow $- 0.78$ (V) if reverse cell given in (i)	1
(c)	(i)	e.m.f for cell must be positive for reaction to occur / be feasible / (1) spontaneous or ΔG must be negative)	
		Cu(s) + 2H ⁺ → products e.m.f = -0.34 won't happen / sensible comparison of the magnitude of E^{\bullet} for the electrodes eg 'Cu electrode more positive than hydrogen electrode won't work' (1)	
	Cu(s)	+ NO ₃ ⁻ + 4H ⁺ \rightarrow products e.m.f = + 0.96 - 0.34 = +0.62 \therefore can occur / similar sensible comparison (1)	3
	(ii)	$3Cu + 2 \operatorname{NO}_{3}^{-} + 8H^{+} \rightarrow 3Cu^{2+} + 2NO + 4H_{2}O$	
		species (1) balanced – this mark dependent on first mark (1)	2
(d)	(i)	$2\text{Fe} + \text{O}_2 + 2\text{H}_2\text{O} \rightarrow 2\text{Fe}^{2+} + 4\text{OH}^- \text{ or } 2\text{Fe}(\text{OH})_2$ (1) ignore state symbols	1
	(ii)	anode (only give this mark if explanation attempted) (1)	
		Fe loses $e^-(::$ negative pole) / oxidation occurs (1) this mark dependent on anode for first mark	2
	(iii)	e.m.f. = $+0.06$ V or reference to $E^{•}$ for electrodes (1)	
		reasoned argument (1) eg positive \therefore should occur / difference so small that reaction unlikely	2

[14]

12. hydrogen electrode (1) (a) Name **Conditions** $1 \text{ M H}^+(\text{aq}) \text{ or } 1 \text{ M HCl}(\text{aq}) \text{ or } 0.5 \text{ M H}_2\text{SO}_4(\text{aq})$ (1) 298 K (1) Hydrogen gas at 1 bar or 100 kPa (1) 4 $E^{•}$ value 1.21 v (1) (b) (i) *Equation* $S_2O_8^{2-} + 2Ag \rightarrow 2SO_4^{2-} + 2Ag^+$ [2] (ii) Change, if any, in electrode potential Less positive or decrease (1) Equilibrium displaced to the left (1) Explanation More electrons released (1) 6

[10]

13. (i) Oxidising agents

 $Cu^{2+}(aq)$ (1), $H_2O_2(aq)$ (1), $C1_2(aq)$ (1) (3) if $Cr_2O_7^{2-}(aq)$ is included, deduct one mark

(ii) $2\Gamma \rightarrow I_2 \quad I(-1) \rightarrow I(0) (1)$ $Mn^{2+} \rightarrow MnO_4^- \quad Mn(II) \rightarrow Mn(VII) (1)$ $Cr_2O_7^{2-} \rightarrow 2CrO_4^- \text{ no change (penalised above)}$ $Cl_2 \rightarrow ClO^- \quad Cl(0) \rightarrow Cl(1) (1)$ (iii) $Cu^2(aq) + \Gamma(aq) + e^- \rightarrow Cu^+(s) (1)$ $\Gamma(aq) \rightarrow \frac{1}{2}I_2(aq) + e^- (not reverse) (1)$ $H_2O_2(aq) + 2H^+(aq) + 2e^- \rightarrow 2H_2O (1) (1)$ $Mn^{2+}(aq) + 4H_2O (1) \rightarrow MnO_4^- (aq) + 8H^+(aq) + 5e^- (not reverse) (1)$ $\frac{1}{2}Cl_2(aq) + e^- \rightarrow Cl^- (aq) (1)$ $\frac{1}{2}Cl_2(aq) + 2OH^-(aq) \rightarrow ClO^-(aq) + H_2O(1) + e^- (not reverse) (1)$ Penalise missing or incorrect state symbols <u>once</u> only

(12 MAX)

[11]

11