5.3 questions ms

1. (a) gains electrons (1) 1
2. (a) (i) $\mathrm{Fe}^{2+} 1$
(ii) $\mathrm{F}_{2} \mathrm{O} \quad 1$
(iii) $\mathrm{Fe}^{2+} \quad 1$
$\mathrm{Cl}^{-} \quad 1$
Use list principle if more than two answers
$\begin{array}{lr}\text { (b) (i) } \begin{array}{ll}\text { e.m.f. }=E(\text { rhs })-E(\text { lhs }) & 1 \\ =1.52-0.77=0.75 \\ & (0.75 \text { scores first mark also })\end{array} & 1\end{array}$
(ii) $\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-} \quad 1$
(iii) Decrease 1
(Increase is CE, no further marks)
Equilibrium (or reaction) shifts to R
\quad (or L if refers to half equation in table)
(or in favour of more Fe^{3+})
(or more Fe^{3+} formed)
(or more electrons formed)
Electrode potential (for $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$) less positive (or decreases) 1
3. (a) Fe^{2+} or Fe (II) 1
(b) (i) 6 or (VI) 1
(ii) 3 or (III) 1
(c) (i) 0.5 1
(ii) $2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{~S}_{2} \mathrm{O}_{8}^{2-} \rightarrow 10 \mathrm{SO}_{4}^{2-}+2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}$
Both SO_{4}^{2-} and MnO_{4}^{-}on right

Balanced 1
4. (a) (i) $0.60 \mathrm{~V} \quad 1$
(ii) $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow \mathrm{SO}_{4}^{2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \quad 1$
(b) (i) $2 \mathrm{IO}_{3}^{-}+2 \mathrm{H}^{+} 5 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 5 \mathrm{O}_{2}+\mathrm{I}_{2}+6 \mathrm{H}_{2} \mathrm{O} \quad \begin{array}{ll}\text { Species } & 1 \\ & \text { Balanced }\end{array}$
(ii) The concentration of the ions change or are no longer standard or the e.m.f is determined when no current flows1
(iii) Unchanged 1
(iv) Increased 1
Equilibrium $\mathrm{IO}_{3}^{-} / \mathrm{I}_{2}$ displaced to the right 1
Electrons more readily accepted or more reduction occurs or electrode becomes more positive (Q o L) 1
(c) VO_{2}^{+} 1
5 or V 1
$\mathrm{V}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{VO}_{2}^{+}+4 \mathrm{H}^{+} 3 \mathrm{e}^{-}$ 1
5. (a) Oxidising agents take/remove/accept/gain electrons (1)

Not 'electron pair'
(b) (i) $\underline{C l}_{2}(\mathrm{~g})$ at $100 \mathrm{kPa} / 1 \mathrm{bar} / 1 \mathrm{~atm}$ (1)
$\left[\mathrm{Cl}^{-}\right]=1$ molar $/ 1 \mathrm{M}$ (1)
Allow 1 M HCl
Temperature $=298 \mathrm{~K} / 25^{\circ} \mathrm{C}$ (1)
Do not use list principle for other incorrect species
(ii) Lower $\left[\mathrm{Cl}^{-}\right]$or reduce temperature

Increase pressure or concentration of Cl_{2} (1)
CE if change incorrect
Equilibrium displace to right (1)
or if reduced temperature given, reaction exothermic
Allow a correct explanation when no change given
(c) (i) Cl^{-}(1)
(ii) Fe^{3+}; (1) NO_{3}^{-}(1)

Penalise by list principle
Note: H^{+}is incorrect
(iii) V^{2+}, (1) Fe^{2+} (1)

Penalise by list principle 5
6. (a) (Standard) hydrogen (electrode) (1) 1
(b) (i) To allow transfer of electrons / provide a reaction surface (1)
(ii) $298 \mathrm{~K}(\mathbf{1})$

Both F^{3+} (aq) and Fe^{2+} (aq) have a concentration of $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathbf{(1)}(\mathrm{QoL})$
OR $\left[\mathrm{H}^{+}\right]=1 \mathrm{~mol} \mathrm{dm}^{-3}$
NOT zero current or $\mathbf{1 0 0} \mathbf{~ k P a}$
(c) $+1.34 \mathrm{~V}(\mathbf{1})$
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{SO}_{4}^{2-}+3 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}^{+}$
Correct species / order (1)
Balanced and cancelled (1)
Allow one for $2 \mathrm{MnO}_{4}{ }^{-}+5 \mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{SO}_{4}{ }^{2-}$
(d) (i) $\mathrm{Ce}^{4+}(\mathrm{aq})(1)$
(ii) $\mathrm{VO}_{2}{ }^{+}(\mathrm{aq})(\mathbf{1}) ; \mathrm{Cl}_{2}(\mathbf{1})$

Penalise additional answers to zero
(e) $\mathrm{Pt}\left|\mathrm{Fe}^{2+}(\mathrm{aq}), \mathrm{Fe}^{3+}(\mathrm{aq}) \| \mathrm{Ce}^{4+}(\mathrm{aq}), \mathrm{Ce}^{3+}(\mathrm{aq})\right| \mathrm{Pt}$

Correct species (1)
Correct order (1)
Deduct one mark for each error
7. (a) Cell e.m.f.: 1.93 (v) CE if negative value given (1)

Half equation: $\mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$(1)
or \rightleftharpoons
Ignore state symbols
Mark on after an AE
(b) Change in e.m.f:: increases (1)

Mark on even if incorrect
Explanation: Equilibrium displaced to Mg^{2+} or to the left (1)
cell reaction or overall reaction goes to the right
Electrode is more negative or E decreases
or gives more electron
or forms more $\mathbf{M g}^{2+}$ ions
Mark separately
(c) Cell e.m.f. : -0.84 (V) (1)

Explanation: Fe is giving electrons or forming Fe^{2+}
or reaction goes in the reverse direction (1)

Mark on after AE

N.B. In (a) and (c) mark on if no value given, but CE in both (a) and (c) if e.m.f. $=0$

8. (a) (i) (standard) hydrogen (electrode) / hydrogen half cell not hydrogen cell (1)
reference electrode / electrode to which others are compared (1)
(ii) $0.00(\mathrm{~V}) / 0 /$ zero (1)
(b) (i) $\quad \mathrm{emf}=-0.14-(-0.25)$

$$
=+0.11 \mathrm{~V} / \text { allow } 0.11 \mathrm{~V} \text { not }-0.11 \mathrm{~V}(\mathbf{1})
$$

(ii) electrode $\mathrm{D} / \mathrm{Sn}^{2+} / \mathrm{Sn} / \mathrm{tin} /$ right hand electrode (1) 1
(iii) $\mathrm{Ni}+\mathrm{Sn}^{2+} \rightarrow \mathrm{Ni}^{2+}+\mathrm{Sn}$ (ignore state symbols) (1) 1
(c) (i) e.m.f $=-0.44-(-0.14)=-0.30(\mathrm{~V}) /$ emf for cell is - ve comparison of standard electrode potentials (1)
+ve e.m.f for feasible reaction / tin is a weaker reducing agent
\therefore would not occur (1)
if correct ΔG argument used, allow both marks
(ii) manganese will decrease in size / disappear / eaten away / dissolves / solution turns (pale) pink (1)
effervescence / bubbles (of colourless gas) / fizzing not gas given off (1)
reaction likely to occur is $\mathrm{Mn}+(2) \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{H}_{2}$ (1)
or the same ideas expressed in words

+ ve e.m.f. / $+1.18 \mathrm{~V} / \mathrm{Mn}$ is strong reducing agent / has
large - ve $E^{(\boldsymbol{\Theta})}$ (1)
(not just Mn is more reactive) 4

9. (a) oxidising agent accepts electrons (1) 1
(b) Stronger oxidising agent
H^{+}(1)

e.m.f.
$0.000-(-0.004)=+0.004 \mathrm{~V}$ (1)
(c) Equation $\quad \operatorname{AgF}(\mathrm{s})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \operatorname{AgCl}(\mathrm{s})+\mathrm{F}^{-}(\mathrm{aq})(1)$ e.m.f.

$$
=+0.78-0.22=+0.56 \mathrm{~V} \text { (1) }
$$

(d) (i) Silver lies above hydrogen in the electrochemical series Or $\mathrm{Ag}^{+}(\mathrm{aq})$ is a stronger oxidising agent than $\mathrm{H}^{+}(\mathrm{aq})$ (1)
(ii) Hydrogen halide Hl (1)
$\begin{array}{ll}\text { Equation } & \mathrm{H}^{+}(\mathrm{aq})+1^{-}(\mathrm{aq})+\mathrm{Ag}(\mathrm{s}) \rightarrow \mathrm{Agl}(\mathrm{s})+\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})(\mathbf{1}) \\ \text { e.m.f. } & 40.00-(-0.15)=+0.15 \mathrm{~V} \text { (1) }\end{array}$
10. (a) Reducing agent Br_{2} (1)

Half equation $\quad \mathrm{Br}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{BrO}_{3}^{-}+12 \mathrm{H}^{+}+10 \mathrm{e}^{-} \mathbf{(1)}$
2
(b) (i) Temperature 298 K or $25^{\circ} \mathrm{C}$ (1) Concentration
(ii) Secondary standard electrode Reason
1.00 M or $1.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathbf{(1)}$
calomel or $\mathrm{Ag} / \mathrm{AgCl}$ (1)

Easier to use or hydrogen electrode (1) difficult to use

4
(c) (i) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ (1)
(ii) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(\mathbf{1})$
(iii) $\quad \mathrm{E}^{\boldsymbol{\ominus}}$ for $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-} /\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{4-}$ is negative with respect to $\mathrm{H}^{+} / \mathrm{H}_{2}(\mathbf{1})$ Electrons flow to $\mathrm{H}^{+} / \mathrm{H}_{2}$ and H^{+}reduced (1)
11. (a) $\mathrm{Fe}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Cu}+\mathrm{Fe}^{2+}$
allow use of soluble Cu salt eg CuSO_{4} ignore state symbols 1
(b) (i) $\quad \mathrm{Fe}$ (s) $\mid \mathrm{Fe}^{2+}$ (aq) $\|_{\|}^{\|} \mathrm{Cu}^{2+}$ (aq) $\mid \mathrm{Cu}(\mathrm{s})$
junctions correct (1)
ignore state symbols
allow alternative symbols for salt bridge
allow if junctions are correct but order is wrong providing
metals on each side of salt bridge are the same ie $\mathrm{Fe} \mid \mathrm{Fe}^{2+}$ not $\mathrm{Fe} \mid \mathrm{Cu}^{2+}$
order of species correct (1)
do not give this mark if cell reversed 2
(ii) e.m.f. $=+0.34-(-0.44)$

$$
=+0.78 \mathrm{~V}
$$

must have + sign
allow - $0.78(\mathrm{~V})$ if reverse cell given in (i)
(c) (i) e.m.f for cell must be positive for reaction to occur / be feasible / (1)
spontaneous or ΔG must be negative)
$\mathrm{Cu}(\mathrm{s})+2 \mathrm{H}^{+} \rightarrow$ products
e.m.f $=-0.34 \therefore$ won't happen $/$
sensible comparison of the magnitude of $E^{\boldsymbol{\ominus}}$ for the electrodes
eg ‘Cu electrode more positive than hydrogen electrode. \therefore won't work' (1)
$\mathrm{Cu}(\mathrm{s})+\mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+} \rightarrow$ products
e.m.f $=+0.96-0.34=+0.62 \therefore$ can occur $/$
similar sensible comparison (1)
(ii) $3 \mathrm{Cu}+2 \mathrm{NO}_{3}^{-}+8 \mathrm{H}^{+} \rightarrow 3 \mathrm{Cu}^{2+}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}$
species (1)
balanced - this mark dependent on first mark (1)
(d) (i) $2 \mathrm{Fe}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Fe}^{2+}+4 \mathrm{OH}^{-}$or $2 \mathrm{Fe}(\mathrm{OH})_{2}$ (1)
ignore state symbols
(ii) anode (only give this mark if explanation attempted) (1)

Fe loses e^{-}(\therefore negative pole) / oxidation occurs (1) this mark dependent on anode for first mark2
(iii) e.m.f. $=+0.06 \mathrm{~V}$ or reference to $E^{\boldsymbol{\Theta}}$ for electrodes (1)
reasoned argument (1)
eg positive \therefore should occur / difference so small that reaction unlikely 2
12. (a) Name hydrogen electrode (1)

Conditions $\quad 1 \mathrm{M} \mathrm{H}^{+}(\mathrm{aq})$ or $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ or $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})(\mathbf{1})$ 298 K (1)
Hydrogen gas at 1 bar or 100 kPa (1)
(b) (i) $E^{\boldsymbol{\Theta}}$ value 1.21 v (1)

Equation $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}+2 \mathrm{Ag} \rightarrow 2 \mathrm{SO}_{4}^{2-}+2 \mathrm{Ag}^{+}[2]$
(ii) Change, if any, in electrode potential Less positive or decrease (1)

Explanation Equilibrium displaced to the left (1) More electrons released (1) 6
13. (i) Oxidising agents
Cu^{2+} (aq) (1), $\mathrm{H}_{2} \mathrm{O}_{2}$ (aq) (1), $\mathrm{C1}_{2}$ (aq) (1) (3)
if $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})$ is included, deduct one mark
(ii) $2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2} \mathrm{I}(-1) \rightarrow \mathrm{I}(0)(1)$

$$
\mathrm{Mn}^{2+} \rightarrow \mathrm{MnO}_{4}^{-} \quad \mathrm{Mn}(\mathrm{II}) \rightarrow \mathrm{Mn}(\mathrm{VII})(\mathbf{1})
$$

$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow 2 \mathrm{CrO}_{4}^{-}$no change (penalised above)

$$
\mathrm{Cl}_{2} \rightarrow \mathrm{ClO}^{-} \quad \mathrm{Cl}(0) \rightarrow \mathrm{Cl}(1)(\mathbf{1})
$$

(iii) $\mathrm{Cu}^{2}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}(\mathrm{s})(\mathbf{1})$ $\mathrm{I}^{-}(\mathrm{aq}) \rightarrow{ }^{1 / 2} \mathrm{I}_{2}(\mathrm{aq})+\mathrm{e}^{-}$(not reverse) (1)
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ (1) (1)
$\mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathbf{1}) \rightarrow \mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-}($not reverse $)(\mathbf{1})$
$\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}$(aq) (1)
$1 / 2 \mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{ClO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{e}^{-}$(not reverse) (1)
Penalise missing or incorrect state symbols once only
(12 MAX)

